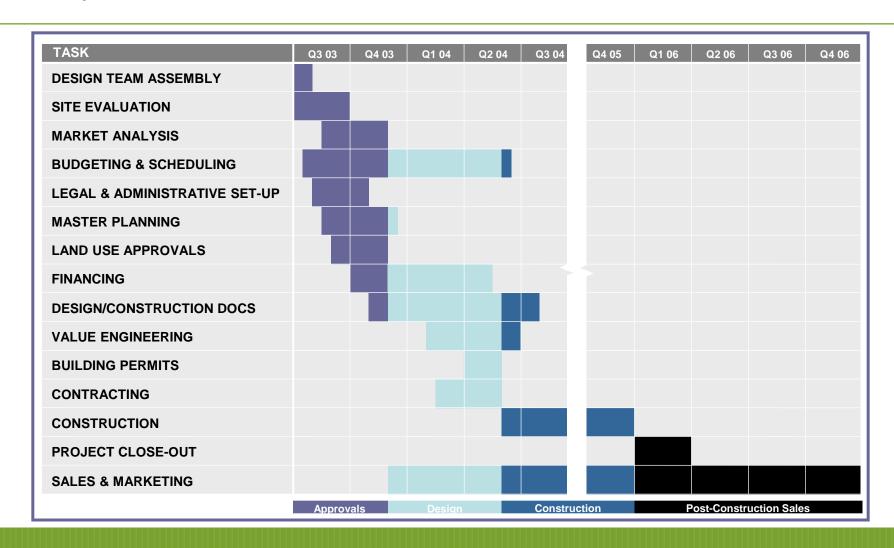
Fundamental Skills for Real Estate Development Professionals I Financial Analysis

Wednesday, November 6 9:15 a.m. – 10:30 a.m.


Alan Razak, Principal

Development Process

#ULIFall13

ULI Education Programs

In-Person Programs

Real Estate Development Process: Part I

Real Estate Development Process: Part II

Basic Real Estate Finance

Real Estate Finance I

Real Estate Finance II

Basic Pro forma Modeling Using Excel

Fundamentals of Land Development: Tools and Strategies

Construction Fundamentals for Development Professionals

Advanced Pro Forma Modeling Using Excel

Multifamily Housing Development and Investment

Private Equity Capital: Understanding and Navigating the Options

Mixed Use for the New Economy: ULI Study Tour

Advanced Real Estate Finance: Capital Sources and Deal Structures

Value-Add Real Estate Development and Investment (Real Estate Entrepreneur Series)

Structuring Your First Real Estate Deal (Real Estate Entrepreneur Series)

Executive Small Scale Developers Workshop (Real Estate Entrepreneur Series)

ULI Education Programs

nline Programs
Creating an Effective Investment Proposal Template
21st Century Real Estate Portfolio Management
Creating Reliable Valuations for Distressed Assets
Basics of Real Estate Finance
Evaluating Project Viability Using Internal Rate of Return (IRR) and other Financial Metrics
Excel Tips and Shortcuts for Real Estate Professionals
Hotel Pro forma Development for the Beginner
Introduction to Modeling Investment Waterfall Distributions
Introduction to Pro forma Modeling with Excel
Pro forma Modeling a Single-Family Home Community
Pro forma Modeling with Excel: Part II
Understanding and Navigating the World of Real Estate Private Equity
Understanding and Utilizing the Time Value of Money (TVM) Concept
Understanding Commercial Cap Rates
Underwriting Office and Multifamily Real Estate Investments
The ABCs of Land Development
Public-Private Partnerships Today: Tools, Tactics, and Opportunities
Using Public-Private Partnerships to Create Value-Added Conversions
Determining Project Viability: Residual Land Valuation and Predevelopment Task Management
Managing Successful Entitlements: Building Community and Political Support for Land Use Projects

ULI Education Programs

- For more information
 - www.uli.org/programs/education
 - Or contact
 - <u>Dave Mulvihill at:</u>
 <u>David.Mulvihill@ULI.org</u>

Real Estate Development Workshop

Fundamental Skills for Real Estate Development Professionals I					
Financial Analysis	9:15-10:30	Alan Razak Principal, AthenianRazak LLC			
Site Selection and Due Diligence	10:45-12:00	Charles A. Long President, Charles A. Long Properties			
Fundamental Skills for Real Estate Development Professionals II					
Project Entitlement	1:15-2:30	David H. Farmer, PE, AICP, CGC Managing Principal Keystone Development Advisors			
Structuring the Deal to be Profitable	3:00-4:15	Christopher Strom Director of Project Development AthenianRazak LLC			

#ULIFall13

Basic Finance Concepts

- Financing Phases & Types
- Evaluation Tools
- Time Value of Money
- Risk and Return on Investment
- Investment Value

Key Project Planning Questions

- Does the market need my project?
- Can I bear the cost of getting the project to the point of construction?
 - Scheduled tasks and costs
 - Sources of funding for each task
- Will the project, if built, be profitable?
 - Overall profitability based on project value less project cost
 - Amount of debt, amount of equity

Project return is expressed many different ways

- Gross Rent Multiplier
- Cash-on-cash
- Return on sales (ROS)
- Return on costs (ROC)
- Return on equity (ROE)
- Net Present Value
- Internal Rate of Return
- Hurdle rate

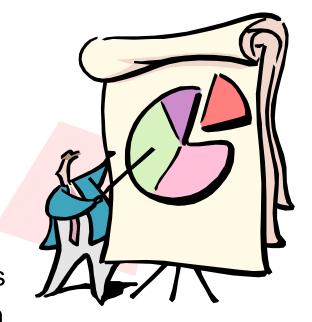
Financing Phases & Types

- Financing Phases
 - Predevelopment
 - Construction
 - Bridge/Mezzanine
 - Permanent
- Debt
- Equity

Risk and Return on Investment

- What's a reasonable return?
- Evaluation of Risk determines required return in relation to alternate investments
- What do you expect back from:
 - U.S. Government (T-Bills)
 - Bank (Demand Deposit)
 - Corporate Bond
 - Mutual Fund
 - Tech Stock
 - Your No-good Brother-in-Law

Risk and Return on Investment


- Expected rate of return
- "Risk-Free" rate of return + risk premium
- The difference between rates of return for different investments reflects market adjustment for comparative perceived risk
- Variables include
 - Safety of principal
 - Duration of investment
 - Timing of cash flows
 - Difficulty of execution

Predevelopment Analysis Types

- Market Analysis: Is the project needed?
 - Determining market support for a proposed project in the proposed location
 - Evaluates supply & demand
 - Estimates potential income
- Feasibility Analysis: Will the project work?
 - Adding financial evaluation to Market Analysis
 - Determines whether the proposed project can achieve the desired financial objectives
 - Considers production cost
 - Involves discounted cash flow analysis

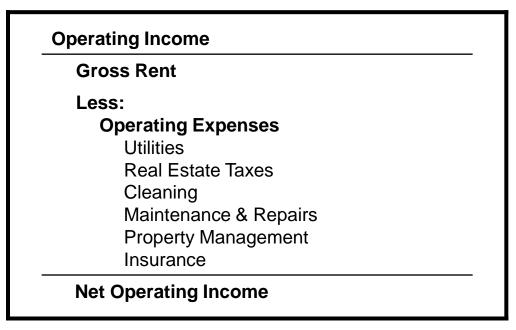
What is Value?

- Value of an Investment is measured by what you get back vs. what you put in
- Evaluated against all other potential uses for investment funds
- "What you put in" is not just cash
- In real estate development, what you put in is a list of items which are spread over time

Methods of Calculating Value

- Appraisal Approaches
 - Income Approach
 - Comparables
 - Replacement Cost
- Investment Methods (variants of Income Approach)
 - "Single-number" Analyses
 - Cash-On-Cash (Return on Equity)
 - Income Capitalization using Capitalization Rate
 - Discounted Cash Flow Analysis
 - Net Present Value (NPV)
 - Internal Rate of Return (IRR)

Sources of Return on Investment


- Definition of "What You Get Back" depends
 - on property type (sale vs. rent)
 - on valuation method
 - Using Cash on Cash or Income Capitalization
 - Stabilized Net Operating Income
 - Using Discounted Cash Flow
 - Periodic Cash Flow
 - Value Appreciation (realized at reversion)
 - Tax Shelter

Single-number Analysis: NOI

 Uses a single number (e.g.; Net Operating Income for rental properties) as basis of value calculation

- Does not include income taxes, depreciation or debt service
- Equivalent to corporate EBITDA

Cash-On-Cash (ROE)

- Measures the rate of return on <u>equity</u> only
- Most often used in for-sale projects but also benchmarks rental projects

ROE =

Cash Flow Before Taxes

Total Equity Invested

Capitalization Rate (Cap Rate)

- Measures the rate of return on total capital invested (i.e., the estimated rate of return on a property at the time of purchase or initial stabilized year)
- Used in rental properties

What is *Total Capital Invested*?

Total Development Cost
or
Total Purchase Price of the Property
or
(introducing the concept of deal structure)
Equity (Investors) + Debt (Lenders)

Cap Rate vs. P/E Ratio

 Cap rate is the inverse of the P/E ratio used in the stock market

Cap rate	P/E Ratio
2%	50
3%	33
4%	25
5%	20
6%	16.7

Corporate Equities vs Real Estate Returns

A high P/E (low cap rate) signals expectations of growth in income.

	P/E Ratio	Cap Rate
John Deere	9.6	10.42%
Ford Motor	11.5	8.70%
Boeing	12.7	7.87%
Microsoft	13.1	7.63%
Apple	13.1	7.63%
General Electric	18.4	5.43%
Google	29.6	3.38%
Class A CBD Office, 1995	12	8.00%
Class A CBD Office, 2007	20	5.00%
Class A CBD Office, 2012	9.1 - 25.0	4.0% - 11.0%

Pop Quiz!

What is the project value?

<u>Value</u>	Cap Rate	Net Operating Income
\$60M	5%	\$3,000,000
\$40M	7.5%	\$3,000,000
\$60M	6%	\$3,600,000
\$50M	10%	\$5,000,000
\$50M	5%	\$2,500,000

Limitations of "Single Number" Value Calculations

- Cash-on-Cash and Income Capitalization Approaches have significant limitations. What are they?
- They don't consider potential fluctuations in cash flows over time
 - Cash flows occur over time but they use only one fixed value as basis of income
 - Don't allow for varying rates of growth of income and expense components
- Their adjustment for risk is a blunt instrument
- Don't fully consider effects of leverage
- Don't consider value appreciation

Time Value of Money

Present Value

- Present Value is a short-form methodology used to evaluate a future cash payment or receipt, a function of
 - Future (face) value (FV)
 - Discount Rate (i)
 - Time (n periods)

$$PV=FV/(1+i)^n$$

- Note: In this sense, the Cap Rate is a specialized discount rate - a real estate "term of art"
 - Rate of expected return, expressed as a percentage, indicating current market conditions for valuing a project

Present Value Example

Single payment received (FV) = \$10 million

Your Discount Rate (i) = 10%

Received 12/31/2016 (n periods) = 7.2 years

$$PV=FV/(1+i)^n$$

 $PV = $10,000,000/(1+.10)^7.2$
 $PV = 5 million

Note the Rule of 72!

Discounted Cash Flow Analysis

 Measures the present value of the income stream to be generated by the property over the life of the investment

Discounted Cash Flow Analysis

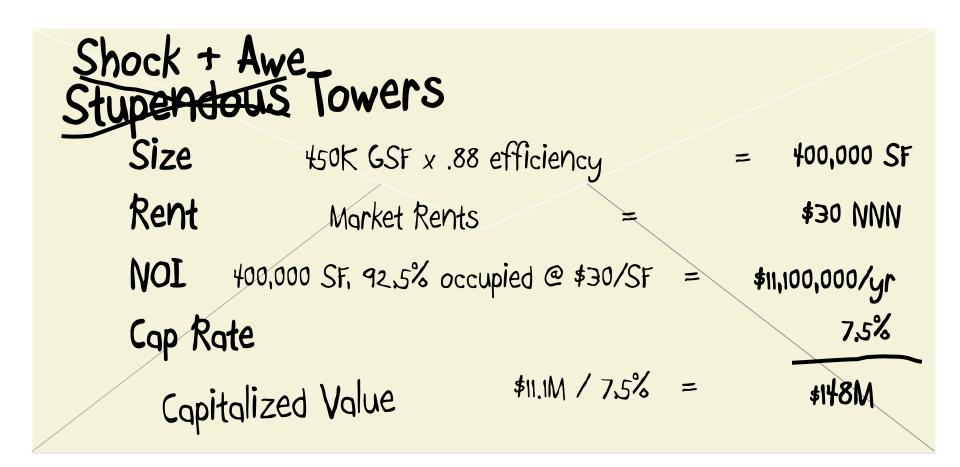
- Discounted Cash Flow analysis is the only really valid way to measure project return
 - Fully accounts for the time value of money
 - Allows for variable cash flows
 - Allows for differential growth rates of income and expense components
 - Allows explicit & discrete inclusion of tax benefits and value appreciation (through reversionary value)
- Yields two key benchmarks
 - Net Present Value
 - Internal Rate of Return

Net Present Value (NPV)

 The <u>value</u> (in terms of today's dollars) of all future cash flows, <u>positive</u> and <u>negative</u>, from the project as discounted by the required rate of return (aka discount or hurdle rate), <u>minus</u> the cost of acquiring the property.

Present Value	Initial	Income for each period			
@ i = 12%	investment	1	2	3	4
(\$100.00)	(\$100.00)				
\$5.36		\$6.00			
\$5.58			\$7.00		
\$5.69	(\$8.00	
\$69.91	(\$110.00
(\$13.46)	= NPV (sur	n of all PV's)		

Internal Rate of Return (IRR)


- The discount rate (stated as a percentage) at which the present worth of future cash flows is exactly equal to the initial capital investment
- i.e.; rate of return where NPV = 0

Present Value	Initial	Income for each period			
@ i = 7.63%	investment	1	2	3	4
(\$100.00)	(\$100.00)				
\$5.57		\$6.00			
\$6.04			\$7.00		
\$6.42				\$8.00	
\$81.97					\$110.00
\$0.00	= NPV (sur	n of all PV's)		

Capitalized Value: a back of the envelope approach

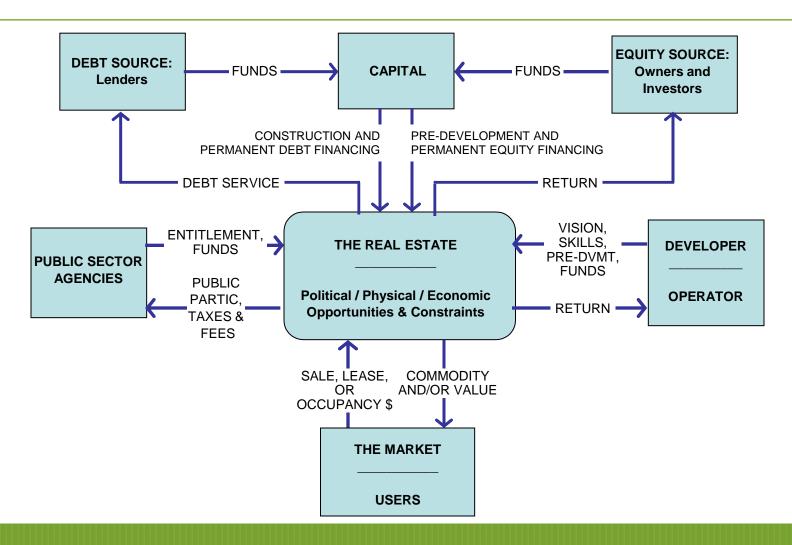
Potential Income

Operating Income		Per SF
Gross Rent		\$40.00
Operating Expenses		
Utilities	\$2.75	
Real Estate Taxes	1.75	
Cleaning	2.25	
Maintenance & Repairs	.75	
Property Management	1.25	
Insurance	.50	
Replacement Reserve	.75	
Total Operating Expenses		\$10.00
Net Rent Rate		\$30.00

Components of Cost

Land	25,000SF @ 18FAR = 450KSF @ \$25/FAR-FT	\$11.3M
Hard Costs	450KSF @ \$175/SF	\$79M
Soft costs	10% of Hard Costs	\$8M
Mktg/Comm's	8% of lease values (\$12M NOI x 10 yrs x 8%)	\$9.6M
Financing/Cal	1 1/2 points + One year carry	\$15.3M
Contingency	10% of non-land costs	\$11M
	Total Cost	MFEI

So...


How do we pay for it?

Basic Financing Structure Involving Debt and Equity

The Capital Stack

Equity

20% to 60% of project costs

Pays return based on performance

Mezzanine or performing debt

Gap financing to cover costs not supported by debt or equity.

Usually paid through performance.

Debt

40% to 80% of project costs

Pays interest, secured by lien

Debt

- Annual interest of 4% to 6.5% hedged, 10 to 30 year amortization.
- 5 to 10 year balloon payment.
- Loan amount a fraction of asset value
- Developer may be required to guarantee performance through recourse provisions:
 - Project completion
 - Cost estimates
 - Lease up

Lender's Triangle

- Lenders fund a loan based on ratios and usually fund the lowest of the three.
 - Loan-to-Cost (LTC)
 - Cost = total project budget (hard & soft costs)
 - Loan-to-value (LTV)
 - For a bank, as determined by appraisal
 - Debt-service Coverage Ratio (DCR)
 - Ratio of Net Operating Income to Debt Service.
 - Varies from 1.15 to 1.3

Equity

- Total target return varies by sector.
- Preferred return 9%-12%
- Usually 15% to 25% "target" total annual return.
- Developer usually must <u>co-invest</u> about 10% of equity.

Equity (continued)

- After debt, "profits" pay
 - Return of principal
 - 2. A preferred return of 9% to 12%
 - A promotional return to achieve target, with some return to developer.
 - 4. After target is reached, higher return to developer.

More debt financing / More leverage

- Debt costs less than equity (why?)
- Higher leverage means higher returns on equity
- Return is expressed as
 - "leveraged" : return on equity
 - "unleveraged": return on total costs

Target Returns: Each use is different

Sector	Target IRR*	Timing of sale or lease	Anchor Tenant		
Land Development	20-30%	With phasing	Depends on phase		
For-sale residential	8-20%	Pre-sales for each phase	None		
Multi-family	7.5-11%	Lease-up after construction	None		
Office	7-12%	Pre-leasing desirable	Desirable		
Retail	7-12%	Pre-leasing usually req'd	Desirable		
Industrial	7-12%	Lease up after construction	Occasional		

^{*}Unleveraged Internal Rate of Return. Higher leverage increases return on equity.

Sources of Development Financing

- Debt (construction or permanent)
 - Seller
 - Bank or Thrift
 - CMBS
 - Life insurance companies
- Equity
 - Seller
 - Private investors
 - Capital firms (REIT's, life insurance, equity firms)
 - Institutions (pension, foreign wealth funds, etc.)
- Public
 - County, city and other local entities
 - Federally insured funding sources

Calculation of Possible Financing for Shock & Awe Towers

- Cost \$134 million
- $(400,000sf \times $30/sf \times 92.5\% occ) = $11,100,000 NOI$
- Back of Envelope showed that if Cap Rate 7.5%, value is \$148 million
- "Sensitivity"
 - If Cap Rate 8%
 - $Value (V) = NOI/Cap Rate = $11.1M/0.08 = $140M \pm 100$

Calculation of Possible Financing (cont'd)

- Lenders Triangle
 - LTV = Loan Amt/Value = 75%*\$148M = \$111M
 - \$111 million loan @ 6.75%, 25 year amortization
 - Payment = \$9.3M/year
 - LTC = Loan Amt/Total Dev. Cost
 - 90%*\$134 million cost = \$120.6M
 - Payment on \$120.6M loan = \$10.1M
 - DCR NOI/Debt Service = 11.1M/9.3M = 1.19
 11.1M/10.1M = 1.10
 - If DCR limit is 1.3, loan max calc'd on pmt: 11.1/1.3 = \$8.54M
 Max loan = \$103M

IRR of Shock & Awe Towers

		1	2	3	4	5	6	7	8	9	10	Sale
Project Cost	(134.0)											
Gross Rent		14.8	15.2	15.7	16.2	16.7	17.2	17.7	18.2	18.7	19.3	
Ор Ех	_	(4.0)	(4.1)	(4.2)	(4.3)	(4.4)	(4.5)	(4.6)	(4.8)	(4.9)	(5.0)	
NOI		10.8	11.1	11.5	11.9	12.2	12.6	13.0	13.4	13.9	14.3	
Tax Benefits	5.0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	
Value Appreciation												238.6
Total Cash Flows	(129.0)	11.1	11.4	11.8	12.2	12.5	12.9	13.3	13.7	14.2	14.6	238.6
Project IRR	13.1%											
Debt	111.0	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(9.3)	(86.2)
Tax												(27.8)
Equity	(18.0)	1.8	2.1	2.5	2.9	3.2	3.6	4.0	4.4	4.9	5.3	124.6
Equity IRR	27.3%											

Real Estate Development Workshop: Fundamental Skills for Real Estate Development Professionals I (Part 1)

Real Estate Financial Analysis

Take Home Points:

- 1. A dollar today is worth more than a dollar tomorrow.
- 2. Higher risk is rewarded with higher potential returns.
- 3. Real estate development projects typically entail variable cash flows over long periods.
- 4. There are multiple ways to rate return on an investment. Because of #3, the only viable way to evaluate feasibility is with Discounted Cash Flow Analysis.