## Fundamental Skills for Real Estate Development Professionals: Financial Analysis





#### **Development Process**





## **ULI Education Programs**

| In-Person Programs                                                                 |
|------------------------------------------------------------------------------------|
| Real Estate Development Process: Part I                                            |
| Real Estate Development Process: Part II                                           |
| Basic Real Estate Finance                                                          |
| Real Estate Finance I                                                              |
| Real Estate Finance II                                                             |
| Basic Pro forma Modeling Using Excel                                               |
| Fundamentals of Land Development: Tools and Strategies                             |
| Construction Fundamentals for Development Professionals                            |
| Advanced Pro Forma Modeling Using Excel                                            |
| Multifamily Housing Development and Investment                                     |
| Private Equity Capital: Understanding and Navigating the Options                   |
| Mixed Use for the New Economy: ULI Study Tour                                      |
| Advanced Real Estate Finance: Capital Sources and Deal Structures                  |
| Value-Add Real Estate Development and Investment (Real Estate Entrepreneur Series) |
| Structuring Your First Real Estate Deal (Real Estate Entrepreneur Series)          |
| Executive Small Scale Developers Workshop (Real Estate Entrepreneur Series)        |



## **ULI Education Programs**

| Online Programs                                                                                  |
|--------------------------------------------------------------------------------------------------|
| Creating an Effective Investment Proposal Template                                               |
| 21 <sup>st</sup> Century Real Estate Portfolio Management                                        |
| Creating Reliable Valuations for Distressed Assets                                               |
| Basics of Real Estate Finance                                                                    |
| Evaluating Project Viability Using Internal Rate of Return (IRR) and other Financial Metrics     |
| Excel Tips and Shortcuts for Real Estate Professionals                                           |
| Hotel Pro forma Development for the Beginner                                                     |
| Introduction to Modeling Investment Waterfall Distributions                                      |
| Introduction to Pro forma Modeling with Excel                                                    |
| Pro forma Modeling a Single-Family Home Community                                                |
| Pro forma Modeling with Excel: Part II                                                           |
| Understanding and Navigating the World of Real Estate Private Equity                             |
| Understanding and Utilizing the Time Value of Money (TVM) Concept                                |
| Understanding Commercial Cap Rates                                                               |
| Underwriting Office and Multifamily Real Estate Investments                                      |
| The ABCs of Land Development                                                                     |
| Public-Private Partnerships Today: Tools, Tactics, and Opportunities                             |
| Using Public-Private Partnerships to Create Value-Added Conversions                              |
| Determining Project Viability: Residual Land Valuation and Predevelopment Task Management        |
| Managing Successful Entitlements: Building Community and Political Support for Land Use Projects |



## **ULI Education Programs**

- For more information
  - www.uli.org/programs/education
  - Or contact
    - <u>Dave Mulvihill at:</u>
       <u>David.Mulvihill@ULI.org</u>



## **Basic Finance Concepts**

- Financing Phases & Types
- Evaluation Tools
- Time Value of Money
- Risk and Return on Investment
- Investment Value



## **Key Project Planning Questions**

- Does the market need my project?
- Can I bear the cost of getting the project to the point of construction?
  - Scheduled tasks and costs
  - Sources of funding for each task
- Will the project, if built, be profitable?
  - Overall profitability based on project value less project cost
  - Amount of debt, amount of equity



## Project return is expressed many different ways

- Gross Rent Multiplier
- Cash-on-cash
- Return on sales (ROS)
- Return on costs (ROC)
- Return on equity (ROE)
- Net Present Value
- Internal Rate of Return
- Key measure: Your Hurdle Rate (aka Discount Rate)



## Financing Phases & Types

- Financing Phases
  - Predevelopment
  - Construction
  - Bridge/Mezzanine
  - Permanent
- Debt
- Equity



## **Risk and Return on Investment**

- What's a reasonable return?
- Evaluation of Risk determines required return in relation to alternate investments
- What do you expect back from:
  - U.S. Government (T-Bills)
  - Bank (Demand Deposit)
  - Corporate Bond
  - Mutual Fund
  - Tech Stock
  - Your No-good Brother-in-Law



## **Risk and Return on Investment**

- Expected rate of return
- "Risk-Free" rate of return + risk premium
- The difference between rates of return for different investments reflects market adjustment for comparative *perceived* risk
- Variables include
  - Safety of principal
  - Duration of investment
  - Timing of cash flows
  - Difficulty of execution



## Predevelopment Analysis Types

- Market Analysis: Is the project needed?
  - Determining market support for a proposed project in the proposed location
  - Evaluates supply & demand
  - Estimates potential income
- Feasibility Analysis: Will the project work?
  - Adding financial evaluation to Market Analysis
  - Determines whether the proposed project can achieve the desired financial objectives
  - Considers production cost
  - Involves discounted cash flow analysis





#### What is Value?

- Value of an Investment is measured by what you get back vs. what you put in
- Evaluated against all other potential uses for investment funds
- "What you put in" is not just cash
- In real estate development, what you put in is a list of items which are spread over time



## Methods of Calculating Value

- Appraisal Methods
  - Comparables
  - Replacement Cost
  - Income Approach
- Investment Methods (variants of Income Approach)
  - "Single-number" Analyses
    - Cash-On-Cash (Return on Equity)
    - Income Capitalization using Capitalization Rate
  - Discounted Cash Flow Analysis
    - Net Present Value (NPV)
    - Internal Rate of Return (IRR)



#### Sources of Return on Investment

- Definition of "What You Get Back" depends
  - on property type (sale vs. rent)
  - on valuation method
    - Using Cash on Cash or Income Capitalization
      - Stabilized Net Operating Income
    - Using Discounted Cash Flow
      - Periodic Cash Flow
      - Value Appreciation (realized at reversion)
      - Tax Shelter



## Single-number Analysis: NOI

 Uses a single number (e.g.; Net Operating Income for rental properties) as basis of value calculation

| Gross Rent            |  |
|-----------------------|--|
| Less:                 |  |
| Operating Expenses    |  |
| Utilities             |  |
| Real Estate Taxes     |  |
| Cleaning              |  |
| Maintenance & Repairs |  |
| Property Management   |  |
| Insurance             |  |

- Does not include income taxes, depreciation or debt service
- Equivalent to corporate EBITDA



#### Cash-On-Cash (ROE)

ROE =

- Measures the rate of return on <u>equity</u> only
- Most often used in for-sale projects but also benchmarks rental projects

## Cash Flow Before Taxes

**Total Equity Invested** 



## Capitalization Rate (Cap Rate)

- Measures the rate of return on *total* capital invested (i.e., the estimated rate of return on a property at the time of purchase or initial stabilized year)
- Used in rental properties

Cap Rate =

NOI

**Total Capital Invested** 



What is Total Capital Invested?

## Total Development Cost or Total Purchase Price of the Property or (introducing the concept of deal structure) Equity (Investors) + Debt (Lenders)



#### Cap Rate vs. P/E Ratio

 Cap rate is the inverse of the P/E ratio used in the stock market

| Cap rate | P/E Ratio |
|----------|-----------|
| 2%       | 50        |
| 3%       | 33        |
| 4%       | 25        |
| 5%       | 20        |
| 6%       | 16.7      |



A high P/E (low cap rate) signals expectations of growth in income.

|                          | P/E Ratio  | Cap Rate     |
|--------------------------|------------|--------------|
| John Deere               | 9.6        | 10.42%       |
| Ford Motor               | 11.5       | 8.70%        |
| Boeing                   | 12.7       | 7.87%        |
| Microsoft                | 13.1       | 7.63%        |
| Apple                    | 13.1       | 7.63%        |
| General Electric         | 18.4       | 5.43%        |
| Google                   | 29.6       | 3.38%        |
| Class A CBD Office, 1995 | 12         | 8.00%        |
| Class A CBD Office, 2007 | 20         | 5.00%        |
| Class A CBD Office, 2012 | 9.1 - 25.0 | 4.0% - 11.0% |



Pop Quiz!

• What is the project value?

| Net Operating Income | <u>Cap Rate</u> | <u>Value</u> |
|----------------------|-----------------|--------------|
| \$3,000,000          | 5%              | \$60M        |
| \$3,000,000          | 7.5%            | \$40M        |
| \$3,600,000          | 6%              | \$60M        |
| \$5,000,000          | 10%             | \$50M        |
| \$2,500,000          | 5%              | \$50M        |



#### Limitations of "Single Number" Value Calculations

- Cash-on-Cash and Income Capitalization Approaches
   have significant limitations. What are they?
- They don't consider potential fluctuations in cash flows over time
  - Cash flows occur over time but they use only one fixed value as basis of income
  - Don't allow for varying rates of growth of income and expense components
- Their adjustment for risk is a blunt instrument
- Don't fully consider effects of leverage
- Don't consider value appreciation



#### Time Value of Money





#### **Discounted Cash Flow Analysis**

 Measures the *present* value of the income stream to be generated by the property over the life of the investment

2013

:021

2020

2019

2018

2017

2016

2015

2014



#### **Present Value**

- Present Value is a short-form methodology used to evaluate a future cash payment or receipt, a function of
  - Future (face) value (FV)
  - Discount Rate (i)
  - Time (n periods)

 $PV=FV/(1+i)^n$ 

- Note: In this sense, the Cap Rate is a specialized discount rate - a real estate "term of art"
  - Rate of expected return, expressed as a percentage, indicating current market conditions for valuing a project



Single payment received (FV) = \$10 million

Your Discount Rate (i) = 10%

Received  $\frac{12}{31}/2016$  (n periods) = 7.2 years

## PV=FV/(1+i)^n PV = \$10,000,000/(1+.10)^7.2 PV = \$5 million

Note the Rule of 72!

72 divided by interest rate (as a whole number) equals years it will take money to double



#### **Discounted Cash Flow Analysis**

- Discounted Cash Flow analysis is the only really valid way to measure project return
  - Fully accounts for the time value of money
  - Allows for variable cash flows
  - Allows for differential growth rates of income and expense components
  - Allows explicit & discrete inclusion of tax benefits and value appreciation (through reversionary value)
- Yields two key benchmarks
  - Net Present Value
  - Internal Rate of Return



#### Net Present Value (NPV)

 The <u>value</u> (*in terms of today's dollars*) of all future cash flows, <u>positive</u> and <u>negative</u>, from the project as discounted by the required rate of return (aka discount or hurdle rate), *minus* the cost of acquiring the property.

| Present Value | Initial    | Income for each period |        |        |          |  |  |  |
|---------------|------------|------------------------|--------|--------|----------|--|--|--|
| @ i = 12%     | investment | 1                      | 2      | 3      | 4        |  |  |  |
| (\$100.00)    | (\$100.00) |                        |        |        |          |  |  |  |
| \$5.36        | <          | \$6.00                 |        |        |          |  |  |  |
| \$5.58        | <          |                        | \$7.00 |        |          |  |  |  |
| \$5.69        | <          |                        |        | \$8.00 |          |  |  |  |
| \$69.91       | <          |                        |        |        | \$110.00 |  |  |  |
| (\$13.46)     | = NPV (sur | n of all PV's)         |        |        |          |  |  |  |



#### Internal Rate of Return (IRR)

- The discount rate (stated as a percentage) at which the present value of future cash flows is exactly equal to the initial capital investment
- i.e.; rate of return where NPV = 0
- In this example the IRR of the cash flows is 7.63%





# Importance of timing cash flows

| 0 | (\$1,000,000) | 0 | (\$1,000,000) |
|---|---------------|---|---------------|
| 1 | \$500,000     | 1 | (\$100,000)   |
| 2 | \$500,000     | 2 | \$50,000      |
| 3 | \$150,000     | 3 | \$150,000     |
| 4 | \$50,000      | 4 | \$500,000     |
| 5 | (\$100,000)   | 5 | \$500,000     |

IRR = 2.14%



Capitalized Value: a back of the envelope approach





| Land        | 25,000SF @ 18FAR = 450KSF @ \$25/FAR-FT                              | \$11.3M |
|-------------|----------------------------------------------------------------------|---------|
| Hard Costs  | 450KSF @ \$175/SF                                                    | \$79M   |
| Soft costs  | 10% of Hard Costs                                                    | \$8M    |
| Mktg/Comm   | S 8% of lease values (\$12M NOI × 10 yrs × 8%)                       | \$9.6M  |
| Financing/C | arry 30 months @ 6.5%, 50% avg balance + 1 ½ points + One year carry | \$15.3M |
| Contingency | 10% of non-land costs                                                | \$11M   |
|             | Total Cost                                                           | \$134M  |



So...

• How do we pay for it?





#### The Capital Stack



20% to 60% of project costs Pays return based on performance

Gap financing to cover costs not supported by debt or equity. Usually paid through performance.

40% to 80% of project costs Pays interest, secured by lien



#### Debt

- Annual interest of 4% to 6.5% hedged, 10 to 30 year amortization.
- 5 to 10 year balloon payment.
- Loan amount a fraction of asset value
- Developer may be required to guarantee performance through recourse provisions:
  - Project completion
  - Cost estimates
  - Lease up





- Total target return varies by sector.
- Preferred return 9%-12%
- Usually 15% to 25% "target" total annual return.
- Developer usually must <u>co-invest</u> about 10% of equity.



- After debt, "profits" pay
  - 1. Return of principal
  - 2. A preferred return of 9% to 12%
  - 3. A promotional return to achieve target, with some return to developer.
  - 4. After target is reached, higher return to developer.



## More debt financing / More leverage

- Debt costs less than equity (why?)
- Higher leverage means higher returns on equity
- Return is expressed as
  - "leveraged" : return on equity
  - "unleveraged" : return on total costs



| Sector               | Target IRR* | Timing of sale or lease     | Anchor Tenant    |
|----------------------|-------------|-----------------------------|------------------|
| Land Development     | 20-30%      | With phasing                | Depends on phase |
| For-sale residential | 8-20%       | Pre-sales for each phase    | None             |
| Multi-family         | 7.5-11%     | Lease-up after construction | None             |
| Office               | 7-12%       | Pre-leasing desirable       | Desirable        |
| Retail               | 7-12%       | Pre-leasing usually req'd   | Desirable        |
| Industrial           | 7-12%       | Lease up after construction | Occasional       |

\*Unleveraged Internal Rate of Return. Higher leverage increases return on equity.



## Sources of Development Financing

- Debt (construction or permanent)
  - Seller
  - Bank or Thrift
  - CMBS
  - Life insurance companies
- Equity
  - Seller
  - Private investors
  - Capital firms (REIT's, life insurance, equity firms)
  - Institutions (pension, foreign wealth funds, etc.)
- Public
  - County, city and other local entities
  - Grants, tax credit programs
  - Federally insured funding sources



## Calculation of Possible Financing for Shock & Awe Towers

- Cost \$134 million
- (400,000sf x \$30/sf x 92.5% occ) = \$11,100,000 NOI
- Back of Envelope showed that if Cap Rate 7.5%, value is \$148 million
- "Sensitivity"
  - If Cap Rate 8%
  - Value (V) = NOI/Cap Rate = \$11.1M/0.08 = \$140M±



## Calculation of Possible Financing (cont'd)

- Lenders Triangle
  - Loan to Cost (LTC) used in construction loans
  - Loan to Value (LTV) used in permanent financing
  - Debt Coverage Ratio used in permanent financing
  - Debt Yield relatively new metric, used mostly by conduits and CMBS, not penetrated to money center banks yet, but gaining traction



## Calculation of Possible Financing (cont'd)

| Metric                                       | Allowable Loan Amount                                                                                                                                             | Debt Svc |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| LTC = Loan Amt ÷ Total Dev. Cost             | 90% X \$134 million cost = \$120.6M                                                                                                                               | \$10.1M  |
| <ul> <li>LTV = Loan Amt ÷ Value</li> </ul>   | 75% X \$148M = \$111M                                                                                                                                             | \$9.2M   |
| <ul> <li>DCR = NOI ÷ Debt Service</li> </ul> | @ \$111M: $11.1M \div 9.2M = 1.21$<br>@ \$120.6M: $11.1M \div 10.1M = 1.10$<br>If DCR limit is 1.25, loan max:<br>$11.1M \div 1.25 = $8.88M$<br>Max loan = \$107M |          |

• **Debt Yield = NOI ÷ Loan Amount** 11.1M ÷ 10% = \$111M

(loan payments calculated @ 6.75%, 25 year amortization)



## IRR of Shock & Awe Towers

|                         | 0       | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | Sale   |
|-------------------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Project Cost            | (134.0) |       |       |       |       |       |       |       |       |       |       |        |
| Gross Rent              |         | 14.8  | 15.2  | 15.7  | 16.2  | 16.7  | 17.2  | 17.7  | 18.2  | 18.7  | 19.3  |        |
| Op Ex                   |         | (4.0) | (4.1) | (4.2) | (4.4) | (4.5) | (4.6) | (4.8) | (4.9) | (5.1) | (5.2) |        |
| NOI                     |         | 10.8  | 11.1  | 11.5  | 11.8  | 12.2  | 12.5  | 12.9  | 13.3  | 13.7  | 14.1  |        |
| Tax Benefits            | 5.0     | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   | 0.3   |        |
| Value Appreciation      |         |       |       |       |       |       |       |       |       |       |       | 234.9  |
| Total Cash Flows        | (129.0) | 11.1  | 11.4  | 11.8  | 12.1  | 12.5  | 12.8  | 13.2  | 13.6  | 14.0  | 14.4  | 234.9  |
|                         |         |       |       |       |       |       |       |       |       |       |       |        |
| Project (Unlevered) IRR | 12.9%   |       |       |       |       |       |       |       |       |       |       |        |
| Debt                    | 111.0   | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (9.2) | (86.7) |
| Cost of Sale            |         |       |       |       |       |       |       |       |       |       |       | (29.6) |
| Equity                  | (18.0)  | 1.9   | 2.2   | 2.6   | 2.9   | 3.3   | 3.6   | 4.0   | 4.4   | 4.8   | 5.2   | 118.6  |
| Equity (Levered) IRR    | 27.1%   |       |       |       |       |       |       |       |       |       |       |        |

